Variability of distribution of Ca(2+)/calmodulin-dependent kinase II at mixed synapses on the mauthner cell: colocalization and association with connexin 35.
نویسندگان
چکیده
In contrast to chemical transmission, few proteins have been shown associated with gap junction-mediated electrical synapses. Mixed (electrical and glutamatergic) synaptic terminals on the teleost Mauthner cell known as "Club endings" constitute because of their unusual large size and presence of connexin 35 (Cx35), an ortholog of the widespread mammalian Cx36, a valuable model for the study of electrical transmission. Remarkably, both components of their mixed synaptic response undergo activity-dependent potentiation. Changes in electrical transmission result from interactions with colocalized glutamatergic synapses, the activity of which leads to the activation of Ca(2+)/calmodulin-dependent kinase II (CaMKII), required for the induction of changes in both forms of transmission. However, the distribution of this kinase and potential localization to electrical synapses remains undetermined. Taking advantage of the unparalleled experimental accessibility of Club endings, we explored the presence and intraterminal distribution of CaMKII within these terminals. Here we show that (1) unlike other proteins, both CaMKII labeling and distribution were highly variable between contiguous contacts, and (2) CaMKII was not restricted to the periphery of the terminals, in which glutamatergic synapses are located, but also was present at the center in which gap junctions predominate. Accordingly, double immunolabeling indicated that Cx35 and CaMKII were colocalized, and biochemical analysis showed that these proteins associate. Because CaMKII characteristically undergoes activity-dependent translocation, the observed variability of labeling likely reflects physiological differences between electrical synapses of contiguous Club endings, which remarkably coexist with differing degrees of conductance. Together, our results indicate that CaMKII should be considered a component of electrical synapses, although its association is nonobligatory and likely driven by activity.
منابع مشابه
Activation of calcium/calmodulin-dependent kinase II following bovine rotavirus enterotoxin NSP4 expression
Objective(s): The rotavirus nonstructural protein 4 (NSP4) is responsible for the increase in cytoplasmic calcium concentration through a phospholipase C-dependent and phospholipase C-independent pathways in infected cells. It is shown that increasing of intracellular calcium concentration in rotavirus infected cells is associated with the activation of some members of protein kinases family su...
متن کاملOpioids potentiate electrical transmission at mixed synapses on the Mauthner cell.
Opioid receptors were shown to modulate a variety of cellular processes in the vertebrate central nervous system, including synaptic transmission. While the effects of opioid receptors on chemically mediated transmission have been extensively investigated, little is known of their actions on gap junction-mediated electrical synapses. Here we report that pharmacological activation of mu-opioid r...
متن کاملHeterosynaptic Molecular Dynamics: Locally Induced Propagating Synaptic Accumulation of CaM Kinase II
Calcium-calmodulin-dependent protein kinase II (CaMKII) is a key mediator of synaptic plasticity and learning. Global pyramidal cell glutamate stimulation induces translocation of CaMKII from dendritic shafts to spines. Here we show that local dendritic stimulation by puffing glutamate onto a region containing 7-32 synapses induces translocation of CaMKII to synapses initially at the puff site ...
متن کامل(S)- 3,5-Dihydroxyphenylglycine )an agonist for group I metabotropic glutamate receptors( induced synaptic potentiation at excitatory synapses on fast spiking GABAergic cells in visual cortex
Introduction: (S)- 3,5-Dihydroxyphenylglycine (DHPG) is an agonist for group I metabotropic glutamate receptors. DHPG-induced synaptic depression of excitatory synapses on hippocampal pyramidal neurons is well known model for synaptic plasticity studies. The aim of the present study was to examine the effects of DHPG superfusion on excitatory synapses on pyramidal and fast-spiking GABAergic cel...
متن کاملStructural and Functional Consequences of Connexin 36 (Cx36) Interaction with Calmodulin
Functional plasticity of neuronal gap junctions involves the interaction of the neuronal connexin36 with calcium/calmodulin-dependent kinase II (CaMKII). The important relationship between Cx36 and CaMKII must also be considered in the context of another protein partner, Ca2+ loaded calmodulin, binding an overlapping site in the carboxy-terminus of Cx36. We demonstrate that CaM and CaMKII bindi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 30 28 شماره
صفحات -
تاریخ انتشار 2010